
Triple Product Integrals of Laguerre Functions 

By J. Gillis and M. Shimshoni 

1. Introduction. We shall use the following standard definitions for Laguerre 
polynomials (1) and Laguerre functions (2): 

(1) Ln~~~(x) = E (-l)r nr x! 

(2) X.(X) = e/2 Ln(X) 

The Laguerre functions are known to constitute a complete orthonormal set in 
L2(0, co ). Given a differential equation over 0 < x < oc one naturally thinks, there- 
fore, of the possibility of solution by expansion as a series of Laguerre functions. 
However, for this to be useful for non-linear differential equations, we need to be 
able to expand the product of two Laguerre functions as a linear series of these 
functions. The main part of this paper is devoted to methods for effecting the 
expansion, and we shall also give an application of the results. The similar problem 
for Laguerre polynomials has been solved by Watson [5], and methods for com- 
puting the expansion coefficients discussed by Gillis and Weiss [31. 

We may write 
00 

(3) XrXs =E rs At t 
t=O 

where 

(4) Crs = Xr(X)X,(x)Xt(x) dx. 

We shall also write this as Crs t . 
It follows that the coefficients will be symmetric in all three suffixes. We give 

below a table of these coefficients for 0 < r ? s ? t < 10, and also expressions of 
Crst as polynomials in t for 0 ? r ? s < 3. 

In Section 2 we discuss a number of formulas for Crst. Those in (a) and (b) 
involve three-fold summations and apply to general r, s, t. In (c) we obtain a 
simple sum formula valid for the case r = 0 and, in (d), a double sum for the case 
r - s. In Section 3 we shall derive two recurrence formulas for the coefficients 
Crst . As a check on the stability of these latter formulas in practice, it is advisable 
to have comparatively simple alternative methods for computing Crst for certain 
particular triads r, s, t. For this purpose the formulas of Section 2 (c), (d) can 
be of use. 

2. Explicit Formulas. 
(a) 

Crst =? 
r X t X" 

_ 2 E 
'O' (_2 ( ) t (a) a!, IOz! 
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(b) Since 
n n x = n! E (- (j) La(X), (cf. [1]), 

a=o ax 

it follows that 

Lr(x)Ls(x) =E (-I)( E (_l) 

2: E ,)P+, (r) (s) (P + q) (-I)' ( t ) Lt(x), 

i.e., 

(7) Lr(X)Ls(x) = Z ArstLt(x) 

where 

(8) Arst E E (l)P+<+t (rs)(p + q )(p +rq) 

Now [1], 

(9) e / = 2E 3 Lp(x) 
p=o 

and so 

E CrstLt(X) e-X/2Lr(x)Ls (x) = 2 E E 3-p-1ArsmLp(x)Lm(x) 
(10) t p=0 m=O 

o2 oo m+p 

=2E E E 3-p-'ArsmAmptLt(x). 
p=0 m=0 t=Im-pI 

Hence 

(1m2 3-p-'Arsm Ampt = 2 E (-1) a+#+y++m+t3-p- 
pIm m,p ,Bi#,y,s 

{r (s~r + fOe + lm)(pr)) +Q 
' 
Y+ 

oe\0J t/\ a M Vy j\ V\ ^y t 

The sum over p yields 

(12) E (p) 3-p-1 2--1 
p2 6: 

while the sum over m is 

E ( (a?+ $)(+ ) = (_1)7(a+ 0) (E 
a ( +a ) 

=0 if y a +1, 
=(-1)t if y a +1. 

Hence 
r s =0 ( l)t+#+t+s (s + a+0+8 + > 

( ) rs t a=O 0=0 5=0 25 \a/ a d : t / 
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(c) Take Laplace transforms of both sides of (3). This gives [2] 

(r + s) pr+s(p 1r-s-l 2F1[-r, -s; -r -s; 1 -p] 

Z Cr.t(p - 2)t(p + ')-t-1 

Writing q = (p - )/(p + '), we obtain 

(16) Z Crst qt = 2 (r + s) + 
)r+3(3 - 

F1[-r, -s; -r -, (3(q + 1)2 

In the special case r = 0 this leads to the simple result that 

CoSt = coefficient of qt in 2(1 + q)8(3 - q)Yl 

(17) t 
n.- 

= 2Z3- 8'(s + n)!{n! (t - n)! (s + n- 
n=O 

We could similarly use (16) to obtain expressions for Cr~t for small nonzero values 
of r, but the formulas soon become prohibitively complicated. It follows incidentally 
from (17) that Cot > 0 for all s, t and that 38+t+lCo0t is an even integer. 

(d) From the generating function [1] 
00 

(18) E Ln(z)un = (1 -u)-1 exp {uz(u- 1)-1} 
n=O 

we obtain 
00 

(19) Z X,(z)u (1 - u) exp {Iz(u + 1)(u - 
n=O 

Hence 
(O+) (O+) 

Xr(z)Xs(z) = (27ri) f f (1 - U>1(1 V)-1U---8-1 

(20) ep{z:j~ ~ f}UV 

.exp {2 Z . + v_ ]}du dv. 

Choose w so that 

(21) (w + 1)/(w -1) = (u + 1)/(u -1) + (v + 1)/(v -1) 

and write 

exp { 2 (w + 1) - lf'} = (1 - E Xt(z)wt. 
t-o 

Then 
00 

-2t( 
) 

(0+) 0(+) 

(22) Xr(Z)Xs(Z) E (27ri) Xt(Z) f F t(U V)U vsdudv 
t=o 
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where 

(23) Ft(u, v) = 2(1 + u + v - 3uv)t(3 - u - v - uv)--'. 

It follows that Crst is the coefficient of uYv8 in Ft(u, v). 
By putting u = 0 we can calculate Cost and immediately recover (17). Formulas 

for other small values of r can be obtained by expanding r F(u, v) ] in powers 

of v. However, there is another case in which this can be used to obtain a closed 
expression for C, Xt, namely, when r = s. For this purpose we write 

(24) Ft(u, v) = (1)t2-2t1- (4a - )t((1 - )-t-l 

where 

a uv 

and 

(25) =(u + 1)(v + 1). 

We note that the coefficient of UrVr in the expansion of 3'B is (n). But, by (24), 

-2t_1t 
00 

mlt\ tmmn- + n) 
(26) Ft (u, v) = (-1)t2-- E E m )l) (4a)t m 4mnhin(t 

It follows that Crrt, the coefficient of urvr in the expression Ft(u, v), is 

(27) E(_1)t E ( l)m2-2(m+n)(t)(t+n)( +n ) 
m=O0 n==O In n /r- t+mIn 

The table of numerical values of Cr,, suggests the conjecture that CGr has the sign 
of (-1)t for 0 < t ? r. This would mean that the double sum in (27) is always 
positive for 0 < t < r, but we have not been able to prove the conjecture. 

3. Recurrence Relations. 
(a) A Two-Index Recurrence Relation. From the relation 

(28) XXr(X) = -(r + 1)X)r+(x) + (2r + 1)Xr(X) - rXr-(x), 

[1], we deduce that 

(29) f XXr(X)Xr+i(X) dx = -(r + ) 

and 
40 

(30) fXXr2 dx = 2r + 1, 

while 

(31) XXrxs dx =0 if s 3 r, r i 1. 
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Multiplying both sides of (28) by X. and using (3), we get 

ECrs tXXt 
t-wo 

(32) 
- -(r + 1)Z Crels A t + (2r + 1)Z CrstXt - r Gr-ist\t- 

t.0 ft-0 t-o 

We now multiply both sides of (32) by Xt and integrate from 0 to ao, using (29), 
(30), (31), and immediately obtain 

(r + 1)Cr+1..., 

= tCfr .t- -+ 2(r - t))Cr,.,t + (t + 1)Cr,8,t+l - rC,_1,t 

This is the required recurrence relation. It can be used quite effectively, in con- 
junction with (17), to compute a table of CrGt. We first compute CoG, by (17) for 
an adequate range of (s, t). It then follows from (33) that 

(34) Clot = tCoJt-l - 2tCwt + (t + 1)Co,,,,+1 

and this gives us Clt,, etc. The computation is reasonably stable, although, as a 
safety precaution, one would carry more digits than are actually needed. Actually, 
the explicit formula for CG. , obtainable from (17) and (34), is 

(35) Cl8 = 2ZE3' n2(3 - 1 + n)!In!(t - n)! (s - t + n + 1)!}r1Fn.t 
n-O 

where 

Fn=t (4s + 1)n2 + (882 - 12st + 6s + 1)n 

(36) + 3432 - (12t - 5)3 + 9t(t - 1) + 11. 

A similar, but much more complicated formula can be derived from this for C2t . 

The corresponding formulas for Got become very complicated for larger values 
of r. 

For work with an electronic computer it would be better to have a method for 
generating the Grot as required rather than to store a table of these coefficients. 
In the next paragraph we propose a method of achieving this by a recurrence 
relation which operates on only one of the indices. 

(b) An Alternative Recurrence Relation. We recall that X, satisfies the differ- 
ential equation 

(37) xXsr + + (r + i - ix) Xr = 0. 

Hence, if we write 

(38) ur = X1/2 

we can easily verify that 

(39) Ur, + Prur = O0 
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where 

=1 +r+ _ 1 (40) P- + 
4x2 x 4 

It may then be deduced, by a standard procedure, that y = uru, satisfies the differ- 
ential equation 

(41) x4(IV) + x3y",, + X2(1 + 2o-x -x) y 

- x(2 + ax + x2)y' + (2 + ax + 32x2)y = 0 

where 

f= r + s + 1' 
(42) a - jr-sf J. 

Let z = XrXs. Then, by (38), 

(43) y= xz 

and this may be substituted directly into (41), giving 

(44) 42(z) = x2z(lV) + 5xz"' + (4 + 2o-x - x2)z" + 3(o- - x)z' + (32 1)z = 0. 

We now write 

(45) Z = CrstXt 

and substitute in ?(z). 
After a little manipulation, using the properties of Laguerre functions, we obtain 

(46) ? (Xt) = p- 5 
xt + 

2 2po + 62 + 2+ P 3 2 xt 

where 

p = t+ 

and hence, again going back to basic properties of Xt, 

x2(Xt) = l3(t + 1)(t + 2)(t + 3)Xt+3 

- 6(t + 1)(t + 2)(10t - 8oa + 13)Xt+2 

-16(t + 1)[3t2 + 2t + 2(882 + 4o- + 1)]xt+? 
(47) 

+ [5(2t + 1)(te + t + 1) + 32(t + 1) - r(t2 + t + 1)]Xt 

- 6t(3t2 + 4t + 1682 - 8o- + 3)Xt-1 

- li~t(t - 1)(lOt - 8o - 3)Xt2 + -3It(t - i)(t -2)Xt-3 

It follows from (45) and (47) that 

(48) x2(z) = Bt 
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where 

t= 1 6t + 3)(t + 2)(t + l)Crs, t+3 

- (t + 2)(t + 1)(lOt - 8o- + 17)Crs, t+2 

- ~1~(t + 1 )[3e + lOt + 1662 - 8o + 1O]Crst+l 

(49) + [f(2t + 1)(t2 + t + 1) + 62(2t + 1) -(t2 + t + 1)JCrst 

-i~t[3t2 + 4t + 1662 + 8a + 3]Crst-i 

- t(t - 1)(lOt - 8a - 7)Crst-2 

+ 3 t(t - 1)(t - 2)Cr,8 t-3 . 

Since C(z) = 0 we have, from the completeness of the Xt's, that 

__t - 8a + 17 3t2 + lOt + 1662 - 8o + 10 Crst+i Cret+3 =lt3o(t + 3) Cret+2 + 3(t + 2) (t + 3) 

10(2te + 3t2 + 3t + 1) + 252(2t + 1) - 160(e + t + 2) 

(50) 3(t + 1)(t + 2)(t + 3) 

+ t(3t - 4t + 1662 + 8o + 3) C 
3(t + 1)(t + 2)(t + 3) r s t-1 

+ t(t - 1)(t 2) t -7) t(t - i)(t - 2) Cr ,t-3 

3t (t - i)(t + 2 3 -t ) e _- (t + 1)(t + 2)(t + 3) r ' 

Suppose, then, we know Cr~t for t = 0, 1, 2. Then, putting t = 0 in (50) gives us 

18Crs,3 = -2(8oT - 17)Cr,82 

(51) + 2(852 - 4 + 5)Cr,,,l - (262 - ST - 10)Cr,, 0 

and the subsequent terms are all obtainable from the recurrence relation. Cr,,,0 
and Cr,,,l can be computed directly from (17) and (35) respectively. It would be 
possible to develop a corresponding formula for Cr,,,2 but it would not be very useful. 
Perhaps the best way to obtain Cr,,,2 is by use of the relation (33). 

It should be remarked that equation (50) is probably the most suitable, among 
the formulas given above, for use with an electronic computer. For work with a 
desk computing machine it is rather complicated, and there is little doubt that (33) 
would prove more useful. 

4. Tables. When working by hand, it will generally be convenient to have a 
table of the numerical values of the Crt . We give this immediately below in Table 
I for 0 < r < s < t < 10. Some general formulas for Crst as polynomials in t for 
o ? r ? s ? 3 are given in Table II. 

5. Application. As mentioned in Section 1, our purpose was to apply the above 
ideas to the solution of non-linear differential equations over a semi-infinite range. 
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TABLE I 

r s I Crt r s I Crst 

0 0 0 .66666667 0 5 8 .07837182 
0 0 1 .22222222 0 5 9 .04878490 
0 0 2 .07407407 0 5 10 .02839004 
0 0 3 .02469136 
0 0 4 .00823045 0 6 6 .16045055 
0 0 5 .00274348 0 6 7 .14305131 
0 0 6 .00091449 0 6 8 .11236326 
0 0 7 .00030483 0 6 9 .07984000 
0 0 8 .00010161 0 6 10 .05233831 
0 0 9 .00003387 
0 0 10 .00001129 0 7 7 .14885106 

0 7 8 .13475521 
0 1 1 .37037037 0 7 9 .10898616 
0 1 2 .22222222 0 7 10 .08038815 
0 1 3 .10699588 
0 1 4 .04663923 0 8 8 .13945383 
0 1 5 .01920439 0 8 9 .12773173 
0 1 6 .00762079 0 8 10 .10570201 
0 1 7 .00294671 
0 1 8 .00111772 0 9 9 .13163910 
0 1 9 .00041773 0 9 10 .12169095 
0 1 10 .00015430 

0 10 10 .12500700 
0 2 2 .27160494 
0 2 3 .20027435 1 1 1 - .07407407 
0 2 4 .11796982 1 1 2 .17283951 
0 2 5 .06127115 1 1 3 .21124829 
0 2 6 .02936544 1 1 4 .15089163 
0 2 7 .01331098 1 1 5 .08687700 
0 2 8 .00579180 1 1 6 .04440380 
0 2 9 .00244242 1 1 7 .02103338 
0 2 10 .00100482 1 1 8 .00944978 

1 1 9 .00408324 
0 3 3 .22405121 1 1 10 .00171233 
0 3 4 .18076513 
0 3 5 .12000203 1 2 2 -.04115226 
0 3 6 .07021287 1 2 3 .08504801 
0 3 7 .03762977 1 2 4 .16369456 
0 3 8 .01891085 1 2 5 .15333029 
0 3 9 .00904835 1 2 6 .10841843 
0 3 10 .00416520 1 2 7 .06553879 

1 2 8 .03580078 
0 4 4 .19519382 1 2 9 .01821086 
0 4 5 .16532033 1 2 10 .00878492 
0 4 6 .11851174 
0 4 7 .07545146 1 3 3 - .02042372 
0 4 8 .04399736 1 3 4 .05009399 
0 4 9 .02398552 1 3 5 .12508256 
0 4 10 .01239969 1 3 6 .14086606 

1 3 7 .11596019 
0 5 5 .17527816 1 3 8 .07989974 
0 5 6 .15303674 1 3 9 .04897920 
0 5 7 .11566665 1 3 10 .02762903 
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TABLE I-Continued 

r s a Crst r S Crat 

1 4 4 - .01188843 2 3 10 .07467760 
1 4 5 .03383631 
1 4 6 .09794126 2 4 4 .12284713 
1 4 7 .12524062 2 4 5 .04609731 
1 4 8 .11552364 2 4 6 -.00911108 
1 4 9 .08823376 2 4 7 .01571953 
1 4 10 .05941345 2 4 8 .06735022 

2 4 9 .09906079 
1 5 5 -.00795949 2 4 10 .10112375 
1 5 6 .02489458 
1 5 7 .07889869 2 5 5 .10347339 
1 5 8 .11044813 2 5 6 .05127568 
1 5 9 .11111857 2 5 7 - .00230192 
1 5 10 .09212795 2 5 8 .00330548 

2 5 9 .04431534 
1 6 6 - .00582692 2 5 10 .08081952 
1 6 7 .01934154 
1 6 8 .06515827 
1 6 9 .09753256 2 6 6 .09128849 
1 6 10 .10499757 2 6 7 .05266394 

2 6 8 .00397312 
1 7 7 -.00451393 2 6 9 -.00198035 
1 7 8 .01560049 2 6 10 .02815229 
1 7 9 .05492763 
1 7 10 .08655013 2 7 7 .08275543 

2 7 8 .05253757 
1 8 8 - .00363396 2 7 9 .00903873 
1 8 9 .01293342 2 7 10 - .00363722 
1 8 10 .04709154 

2 8 8 .07631313 
1 9 9 - .00300868 2 8 9 .05177168 
1 9 10 .01095104 2 8 10 .01298846 

1 10 10 - .00254500 2 9 9 .07120551 
2 9 10 .05073310 

2 2 2 .20576132 2 10 10 .06701828 
2 2 3 - .00457247 
2 2 4 .00335315 3 3 3 - .05375197 
2 2 5 .09053498 3 3 4 .11295704 
2 2 6 .13260174 3 3 5 .07694175 
2 2 7 .12277939 3 3 6 -.00123814 
2 2 8 .09060272 3 3 7 .00106252 
2 2 9 .05811997 3 3 8 .05014082 
2 2 10 .03385805 3 3 9 .09001406 

3 3 10 .10048996 
2 3 3 .15658182 
2 3 4 .03119443 3 4 4 - .03744912 
2 3 5 -.01249810 3 4 5 .07177090 
2 3 6 04167161 3 4 6 .08787554 
2 3 7 .09805416 3 4 7 .02244924 
2 3 8 .11549354 3 4 8 -.00731554 
2 3 9 .10130123 3 4 9 .01802366 
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TABLE I-Continued 

r s t Crst r s t Crst 

3 4 10 .05982871 4 7 10 .02567632 

3 5 5 - .02226023 4 8 8 .06531960 
3 5 6 .04824409 4 8 9 .02633548 
3 5 7 .08353180 4 8 10 - .00693875 
3 5 8 .03995357 
3 5 9 - .00156912 4 9 9 .05946498 
3 5 10 .00178650 4 9 10 .02814148 

3 6 6 - .01411745 4 10 10 .05504858 
3 6 7 .03516063 
3 6 8 .07516477 5 5 5 - .04386690 
3 6 9 .04998029 5 5 6 .08650875 
3 6 10 .00808104 5 5 7 .03500443 

5 5 8 - .01294078 
3 7 7 - .00985944 5 5 9 .02870872 
3 7 8 .02724675 5 5 10 .06403893 
3 7 9 .06668946 
3 7 10 .05474855 5 6 6 - .03350414 

5 6 7 .06117194 
3 8 8 - .00741466 5 6 8 .05170139 
3 8 9 .02201080 5 6 9 - .00581844 
3 8 10 .05915185 5 6 10 .00668642 

3 9 9 - .00586119 5 7 7 - .02189833 
3 9 10 .01830449 5 7 8 .04397838 

5 7 9 .05640500 
3 10 10 - .00479475 5 7 10 .00564310 

4 4 4 .12925988 5 8 8 - .01467602 
4 4 5 - .02134197 5 8 9 .03341818 
4 4 6 .02196251 5 8 10 .05551730 
4 4 7 .08246301 
4 4 8 .05322789 5 9 9 - .01055417 
4 4 9 .00474524 5 9 10 .02668086 
4 4 10 - .00303408 

5 10 10 -.00808528 
4 5 5 .10673496 
4 5 6 .00196740 6 6 6 .09687151 
4 5 7 - .00100286 6 6 7 - .02410491 
4 5 8 .06117005 6 6 8 .02789589 
4 5 9 .06583263 6 6 9 .06239762 
4 5 10 .02450630 6 6 10 .01401545 

4 6 6 .08660706 
4 6 7 .01580477 6 7 7 .08320655 
4 6 8 -.00811483 6 7 8 - .00757894 
4 6 9 .04086770 6 7 9 .00739178 
4 6 10 .06525394 6 7 10 .05666489 

4 7 7 .07367692 6 8 8 .06900813 
4 7 8 .02281235 6 8 9 .00401100 
4 7 9 - .00867086 6 8 10 - .00218959 
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TABLE I-Continued 

r S t Crst r S t Cr8t 

6 9 '9 .05911346 8 8 8 .07864342 
6 9 10 .01077477 8 8 9 - .02407255 

8 8 10 .02947714 
6 10 10 .05253399 

8 9 9 .06917670 
7 7 7 - .03776986 8 9 10 - .01154288 
7 7 8 .07123199 
7 7 9 .01652253 8 10 10 .05829179 
7 7 10 - .00951384 

9 9 9 -.03353927 
7 8 8 -.03035843 9 9 10 .06114106 
7 8 9 .05351461 
7 8 10 .03227809 

9 10 10 - .02786041 
7 9 9 - .02107272 
7 9 10 .04012854 

10 10 10 .06681991 
7 10 10 -.01469083 

TABLE II 

r S Cr8t 

o 0 2.3-t-1 
0 1 (8t + 2)3-t-2 
0 2 (16t2 + 2)3-t-3 
0 3 (64t3 - 48t2 + 56t + 6)3-t-5 

1 1 (32t2 - 48t + 10)3-t-3 
1 2 (64t3 - 240t2 + 200t + 18)3-t-4 
1 3 (256t4 -1664t3 + 3056t2 - 1264t + 78)3-t-6 

2 2 (128t4 - 1024t3 + 2464t2 - 1664t + 66)3-t-5 
2 3 (512t5 - 6528t4 + 28160t3 - 46848t2 + 24824t + 438)3-t-7 

3 3 (2048t6 - 39936t5 + 285824t4 - 920832t3 + 1314560t2 - 647280t + 
4410)3-t-9 

An example of such an application will be given to illustrate the various technical 
problems involved. 

The Blasius Equation. 

(52) y"' + yy" = 0 

(53) y(0) = y'(0) = 0; y'( cc) = 2. 

This is a well-known equation whose numerical solution has long been known [4]. 
However, as an example of the Laguerre functions method, we sought an approxi- 
mate solution of the form 

N 

(54) y = fN(x) = 2x + aN+ Z brXr 
r=O 



TRIPLE PRODUCT INTEGRALS OF LAGUERRE FUNCTIONS 61 

where aN, bNO, b61, --- , bNN were constants to be determined. 
The boundary condition at infinity is clearly satisfied, and, to attend to the 

conditions at x = 0, we need 
N 

(55) aN+ EbNr = 0 
=0 

and 
N 

(56) 2- E (r + ')bNr = 0 
r=0 

thus leaving us the possibility of imposing N further conditions on the (N + 2) 
coefficients aN , bNr (r = 0, 1, * * , N). As an obvious set of conditions, we should 
substitute from (54) in (52), express y"' + yy" as a linear sum of X.'s, and equate 
the coefficients of Xo, X1, * **, XNli to zero. However, there is a difficulty in the 
way of this program. The expression for X.' in terms of the Laguerre functions 
themselves involves all the X, for 0 < r < n, while the expressions for Xn1" X"n' 

become very complicated. The situation can be saved by pre-multiplying (52) by 
X3 and making repeated use of the relation 

(57) Xn = 2 (n + 1)Xn+l - -Xn - 1nn-i 

Proceeding in this way, one finds oneself confronted with expressions of the form 
XrXn . They, too, can be resolved by the repeated use of the relation 

(58) xXA = - (n + 1)Xn+1 + (2n + 1)X. nXn1 , 

which also follows trivially from the fundamental properties of Laguerre poly- 
nomials. 

After making all of these substitutions into (52), we still have to deal with 
products of Laguerre functions arising from the nonlinear term, and these have to 
be resolved by (3). We are now in a position to equate the coefficients of Xo, 1X, *... * 
XN-1 to zero, obtaining a set of N quadratic equations which, together with (55) 
and (56), should suffice to determine the coefficients. In general, there will be 
more than one solution, and any one of them might, if N is large enough, be ex- 
pected to yield a function fN(x) which will approximate the exact solution of (52). 
Since the solutions are obtained by equating the coefficients of Xo, X1, *..., XN-1 
to zero, it has been found useful in practice to select the one for which the coefficient 
Of XN is least in absolute value. 

Setting up the equations even for so simple a case as (52) is not a trivial task, 
and can become extremely laborious for more complex equations. However, there 
would be no real difficulty in having all the work, including the formal steps repre- 
sented by (3), (57), and (58), programmed for an electronic computing machine. 

We have described the procedure so far in some detail, since it is of quite general 
application. The next step is actually to solve the equations for aN, bNr (r = 0, 
1, ... N), and for this purpose the following type of approach has been found to 
be practical. One first solves for some small value of N. The advance from N to 
N + 1 is effected by solving the equations for N + 1 by the Newton-Raphson 
method, taking as a first approximation to this solution 

(59) a(J)i = aN , bN') Or = bN,r (r = 0, 1, ... , N) , bV4l )+1 = 0 
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An advantage of this choice of first approximation is that it might, for obvious 
reasons, be expected to be better as N increases. Hence the number of steps re- 
quired for convergence decreases. 

In the particular case of the Blasius equation, we started with N = 1, i.e., 
with three coefficients to be determined. Eliminating two of them by (55), (56) 
left us with a quadratic equation in one unknown. The step to N = 2 was effected 
as described. There would be no difficulty in principle in carrying on to higher 
values of N. However, the arithmetic soon becomes extremely laborious, and the 
task is best handed over to an electronic computing machine. The result for N = 2 
is shown in Table III. The function tabulated as f(x) was obtained by direct 
numerical integration, using essentially Hamel's original method, and is given cor- 
rect to three decimal places. 

TABLE III 

X f2(x) f(x) 

0 0 0 
1 0.732 0.650 
2 2.337 2.305 
3 4.247 4.280 
4 6.252 6.279 
5 8.248 8.279 
6 10.273 10.279 
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